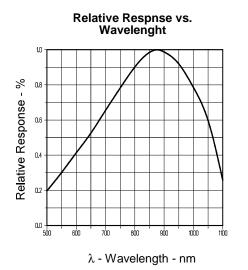


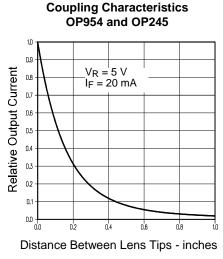
PIN Silicon Photodiode Type OP954

Features

- Very wide receiving angle
- Linear response vs. irradiance
- Fast switching time
- Side-looking package ideal for space limited applications

Description


The OP954 device consists of a PIN silicon photodiode molded in a clear epoxy package which allows spectral response from visible to infrared light wavelengths. The very wide receiving angle provides relatively even reception over a large area. The side-looking package is designed for easy PC board mounting. These devices are 100% production tested using infrared light for close correlation with Optek's GaAs and GaAlAs emitters.

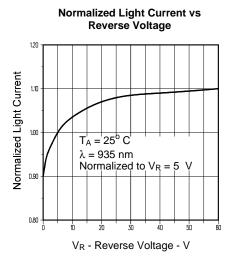

Absolute Maximum Ratings ($T_A = 25^\circ$ C unless otherwise noted)

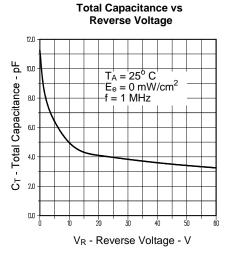
Reverse Breakdown Voltage	
Storage and Operating Temperature Range	^o C to +100 ^o C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. w	
iron]	260° C ⁽¹⁾
Power Dissipation	100 mW ⁽²⁾
Netoo	

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. Max. 20 grams force may be applied to leads when soldering. (2) Derate linearly 1.67 mW° C above 25° C.
- (3) Light source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the photodiode being tested.
- (4) To calculate typical dark current in μ A, use the formula I_D = 10^(0.042 T_A-1.5) where T_A is ambient temperature in ^o C.

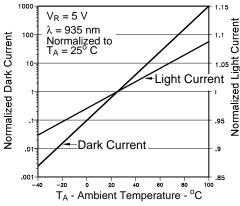
Typical Performance Curves

1215 W. Crosby Road

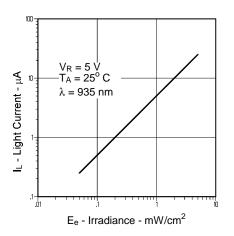

Carrollton, Texas 75006

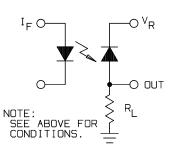

Type OP954

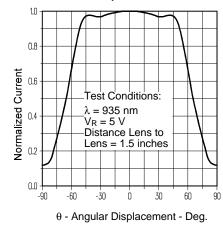
Electrical Characteristics (T_A = 25^o C unless otherwise noted)


SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITIONS
١L	Reverse Light Current	3.5		8	μA	$V_{R} = 5 V, E_{e} = 1 mW/cm^{2(3)}$
ID	Reverse Dark Current		1	60	nA	$V_{R} = 30 V, E_{e} = 0$
V(BR)	Reverse Breakdown Voltage	60			V	I _R = 100 μA
VF	Forward Voltage			1.2	V	I _F = 1 mA
CT	Total Capacitance		4		pF	$V_R = 20 V, E_e = 0, f = 1.0 MHz$
t _r , t _f	Rise Time, Fall Time		5		ns	V_R = 20 V, λ = 850 nm, R _L = 50 Ω

Typical Performance Curves




Normalized Light and Dark Current vs Ambient Temperature


Light Current vs. Irradiance

Switching Time Test Circuit

Light Current vs. Angular Displacement

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible. Optek Technology, Inc. 1215 W. Crosby Road Carrollton, Texas 75006 (972)323-2200 Fax (972)323-2396